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We show that a strongly correlated quantum dot embedded in an Aharonov-Bohm interferometer can be used
to filter both charge and spin at zero voltage bias. The magnitude with which the Aharonov-Bohm arm is
coupled to the system controls the many-body effects on the quantum dot. When the quantum dot is in the
Kondo regime, the flow of charge through the system can be tuned by the phase of the Aharonov-Bohm arm,
�AB. Furthermore, when a spin-orbit interaction is present on a Kondo quantum dot, we can control the flow of
spin by the spin-orbit phase, �SO. The existence of the Kondo peak at the Fermi energy makes it possible to
control the flow of both charge and spin in the zero voltage bias limit.
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I. INTRODUCTION

The ability to easily control charge and spin transport is of
great importance in nanotechnology, specifically spintronics.
The quantum dot Aharonov-Bohm interferometer �QD-ABI�
�Fig. 1� has been found to be a candidate for manipulating
electron spins.1,2 In recent years, a number of theories3–5

have been put forth to take advantage of the interference
effects in such a geometry. Sun and Xie1 showed that the
spin polarization on the QD may be controlled via the volt-
age bias. In the presence of a local Coulomb interaction on
the QD, Hofstetter et al.3 studied the dependence of the Fano
line shape on the AB phase.

In this paper, we show that the addition of a spin-orbit
�SO� interaction on the strongly correlated QD allows the
QD-ABI to function as a spin-charge filter. The ability of this
system to act as a filter is a consequence of the interference
between the continuum �AB arm� and the localized state
�QD�, which is known as the Fano effect.6 Aside from the
QD-ABI, the Fano effect has been observed in a single elec-
tron transistor,7 a quantum wire with a side coupled QD,8,9

and multiwall carbon nanotubes in a crossed geometry.10

The presence of the AB arm tends to localize electrons on
the QD, depending on how strongly the arm is coupled to the
system. Therefore, this property will give us an effective
control over the strength of these correlations on the QD. We
may exploit this tuning of the many-body physics to control
the charge-spin transport of the QD-ABI system.

The QD interactions we will study in this paper are an
on-site Coulomb interaction and the Rashba spin-orbit
interaction.11 The Coulomb interaction in the Kondo regime
will allow us to filter both charge and spin at zero bias. The
reason for this is due to the fact that the Kondo effect induces
a sharp resonance in the QD spectral function at the Fermi
energy. The further addition of the SO interaction, which is
induced by the application of a gate potential, for a single
orbital QD, will create a spin dependent phase factor2 in the
AB arm tunneling coefficient.

Often the spin-orbit interaction is considered a coupling
with spin degrees of freedom mediated by interlevel transi-
tions in quantum dot systems and therefore, due to the sig-
nificant level spacing and the Coulomb interaction, the inter-

level SO coupling strengths in QD systems are thought to be
small. However, as pointed out in Ref. 2, an intralevel phase
factor induced by the SO coupling may be realized in sys-
tems with high g-factors12 such as InGaAs quantum dots.
Without the interference effect, e.g., without the AB arm,
such effect can be ignored. However, the presence of the AB
arm not only manifests the intralevel SO interference effects,
but also effectively controls the many-body effects on the
QD, hence a strong influence on the charge-spin transport.

The experimental setup of the QD-ABI is consistent with
that of Kobayashi et al.13 The left and right leads are mod-
eled as infinite noninteracting electron reservoirs. They are
connected to each other via two arms. The top arm is the AB
arm which has a complex tunneling coefficient t0= �t0�ei�AB

that is controlled by a magnetic field. The sign of �AB is
defined as positive for electrons traveling from the left res-
ervoir to the right reservoir. We consider the magnetic field
to be small enough so that we may ignore the Zeeman split-
ting of the QD energy level. The bottom arm contains the
embedded QD with real tunneling coefficients tL and tR. We
choose tL, tR to be real because the L, R states are defined to
absorb the phase factor. Our calculations are carried out in
the low-bias, linear response regime.
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FIG. 1. Experimental setup of the quantum dot embedded AB
interferometer. Two infinite electron reservoirs �Left, Right� are
connected by two arms. The bottom arm contains the embedded QD
with real tunneling coefficients tL and tR. The upper arm is a direct
connection between the left and right leads with a complex tunnel-
ing coefficient t0= �t0�ei�AB, where �AB is a phase factor controlled
by the magnetic field, B. The sign of �AB is positive for electrons
traveling from the left to the right, as the arrow indicates. IL, IR, and
IRing are the Left, Right, and Ring currents, respectively.
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II. THEORY

A. Transmission coefficient T(�)

In this section of the paper, we will derive the general
transport functions for the QD-ABI, which are valid for a
local interaction on the QD. The noninteracting Hamiltonian
of the system is given by

H = HL,R + Hd + Ht. �1�

The Hamiltonian H consists of three parts: HL,R describes
the reservoirs, Hd the QD, and Ht the tunneling between the
reservoirs.

HL,R = �
�k�

��kc�k�
† c�k�, �2�

Hd = �
�

�dd�
†d�, �3�

Ht = −
1

��
�
�k�

t��c�k�
† d� + H.c.� −

1

�
�
k,k�

�t0cLk�
† cRk�� + H.c.� ,

�4�

where c�k�
† �c�k�� and d�

† �d�� are the creation �annihilation�
operators with momentum k and spin � of the �= �L ,R� res-
ervoir and the QD, respectively. In addition, � is the volume
of the reservoirs, which is taken to infinity.

Before presenting the Landauer formula for the current,
we define the parameters. In the noninteracting limit without
the AB arm, the line broadening of the QD spectral function
due to the leads is �=�L+�R, where ��=�N0t�

2 . In our cal-
culations, we take the density of states, N0, to be a constant.

The current from the L to R reservoir, regardless of the
local interaction on the QD, is expressed by the Landauer
formula,14

IL =
2e2

h
�

−	

	

T���
f���d� . �5�

Here, 
f���= fL���− fR���, and T��� is the transmission func-
tion. The transmission function was previously reported in
Refs. 3 and 4, although without derivation. Therefore, we
present the derivation, which makes use of standard Keldysh
Green function techniques,15,16 in the Appendix. Here, we
summarize the results.

The transmission function may first be decoupled into two
parts, the flow of current through the QD and through the AB
arm,

T���
f = iQD��� + iAB��� ,

iQD��� = − tL„GdL
� ��� − GLd

� ���… = 2 Re�− tLGdL
� ���� ,

iAB��� = �− t0
*GRL

� ��� + t0GLR
� ���� = 2 Re�− t0

*GRL
� ���� , �6�

where we have used the relation, G��
� =−�G��

� �*. iQD and iAB
are the contributions to the current from the QD and the AB
arm, respectively. To simplify our notation, we define the
following parameters:

T0 =
4r0

�1 + r0�2 , �7�

R0 = 1 − T0 = 	1 − r0

1 + r0

2

, �8�

� =
4�L�R

�2 , �9�

�̄ =
�

1 + r0
, �10�

where r0=�2N0
2�t0�2. Here, T0 is the transmission function

when the QD is disconnected from the left and right reser-
voirs, i.e., tL= tR=0. The current through the QD and AB arm
is found below.

iQD = 	− ��̄�R0 − 2T0�L�R sin2��AB�

−
�L − �R

2
��T0 sin��AB�
Im�Gdd

R �
f

− �̄��T0 cos��AB�Re�Gdd
R �
f − iRing, �11�

iAB = 	��̄�T0��T0 cos2��AB� − 1� + 2T0�L�R sin2��AB�

+
�L − �R

2
��T0 sin��AB�
Im�Gdd

R �
f

+ 2T0�̄�� cos��AB�Re�Gdd
R �
f + iRing + T0
f . �12�

In our analysis, we find that there exists a ring current
even at zero bias,

iRing = − ��T0� sin �AB Im�Gdd
R � f̄ . �13�

Here, f̄ = �fL+ fR� /2 is the average Fermi function. This cur-
rent flows in the clockwise direction through the AB ring,

and persists even at zero bias since it is proportional to f̄ , not

f . Although the ring current can be of the same order of
magnitude as the total current, it does not contribute to the
source-drain current.

Using Eq. �6�, we arrive at the exact transmission func-
tion,

T��� = T0 − 2�̄��T0R0 cos��AB�Re�Gdd
R ����

− �̄���1 − T0 cos2��AB�� − T0�Im�Gdd
R ���� . �14�

We emphasize that Gdd
R ��� is the full interacting QD retarded

Green function, and Eq. �14� applies to systems with an in-
teracting QD.

B. Noninteracting limit

In the noninteracting limit, we will address two important
points. First, as the coupling to the left and right reservoirs is
increased through �t0�, the electron becomes more localized

HEARY, HAN, AND ZHU PHYSICAL REVIEW B 77, 115132 �2008�

115132-2



on the QD. Second, the noninteracting system is not suitable
for controlling both charge and spin transport.

The noninteracting QD spectral function is given by

A��� =
�̄/�

�� − �d − �2 + �̄2
, �15�

where

 =
2�r0�L�R

1 + r0
cos��AB� �16�

and �̄ was defined in Eq. �10�. We plot A��� in Fig. 2 for
different values of �t0�. Notice that as the magnitude of �t0� is
increased, the QD spectral function becomes sharper and the
center of the peak is shifted. This shift in the QD energy, ,

and the reduced line broadening, �̄, are easily understood by
performing a bonding-antibonding transformation of the
leads in real space. Upon doing so, the QD is now only
coupled to the first site of the bonding chain, where the local
energy of this site is shifted by −�t0 �cos��AB�. Thus, by in-
creasing �t0�, the connection of the QD to the bonding chain
is reduced, and the energy level of the QD is shifted upward.

The differential conductance is given as G���
=e�dI /d��, and in the zero bias and low-temperature limit,
G�0�= 2e2

h T�0�. Therefore, at equilibrium, we only need T�0�
to determine the conductance. In Fig. 3, we plot the trans-
mission amplitude as a function of the AB phase, �AB. When
�AB= �

�
2 , T�0�=1. When �AB= �0,��, the Fano antireso-

nance becomes most prominent and the minimum of the
peaks are positioned significantly above and below the Fermi
energy. As a result of this fact, we are not able to extinguish
the charge or spin conductance at zero bias. If we were able
to shift the minima of these antiresonance peaks to the Fermi
energy, then we would be able to fully control the transport
through this system at zero bias by tuning �AB. In the next
section, we show that we can accomplish this through the
Kondo effect.

C. Interacting Fano effect

When a local many-body interaction is present on the QD
site, the problem is essentially reduced to calculating the full
QD retarded Green function, Gdd

R ���. Once we know this
Green function, we may then calculate the transmission func-
tion using Eq. �14�. In this paper, we take into account the
Coulomb interaction on the QD in the form of the Anderson
interaction,

Hint = Un̂d↑n̂d↓. �17�

We perform the diagrammatic calculation in the imaginary-
time formalism. The QD Green function, at imaginary Mat-
subara frequency i�n= i �2n+1��

� , is given by Gdd�i�n�
= �Gdd

0 �i�n�−1−��i�n��−1, where the self-energy ��i�n� is
calculated to second order in U �Fig. 4�. The second-order
perturbation theory has been studied extensively17–21 and
shown to be a very good approximation in the particle-hole

symmetric limit up to values of U / �̄6 �weak-coupling re-
gime�. This weak-coupling approximation has also been used
within the framework of dynamical mean field theory,22 and
produced agreement with nonperturbative methods. In our
model, the particle-hole symmetry is broken for �0, but
the calculation of the zero bias conductance is in excellent
agreement with the nonperturbative numerical renormaliza-
tion group3 �NRG� as will be shown.
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FIG. 2. QD spectral function for different magnitudes of �t0� at
�AB=0. As �t0� is increased, the electron becomes more localized on
the QD and the distribution of energies shifts away from the Fermi
energy.

-10 -5 0 5 10

ε/Γ

0

0.2

0.4

0.6

0.8

1

T
(ε

)

ϕ
AB

= -π/2
ϕ

AB
= 0

ϕ
AB

= π/2
ϕ

AB
= π

Γ
L/R

= 0.0707

r
0

= 2.467

FIG. 3. Noninteracting transmission function for different values
of �AB. When �AB= �− �

2 , �

2 �, we see a resonance at the QD energy
level. The �AB= �− �

2 , �

2 � curves coincide; away from these curves,
the interference effects become more pronounced and the transmis-
sion function becomes asymmetrical. When �AB= �0,��, the inter-
ference effects become most pronounced and a very strong antireso-
nance emerges, which is shifted to the left or right of the QD energy
level. In the limit ���→	, the transmission converges to a finite
value, due to the AB arm.
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FIG. 4. Self-energy expanded to second order in U.
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The first-order diagram becomes U�nd�= U
2 in the half-

filled limit. Absorbing the first-order diagram into the nonin-
teracting Matsubara Green function, we have

Gdd
0 �i�n� =

1

i�n −  + i�̄ sign��n�
, �18�

and the second-order self-energy becomes

��2��i�n� =
U2

�2 �
�1,�2

Gdd
0 �i�n − i�1�Gdd

0 �i�2�Gdd
0 �i�1 + i�2� .

�19�

Now we are in position to solve this problem numerically.
First, we calculate the self-energy in Matsubara frequency.
Then in order to calculate T���, we must analytically con-
tinue the Green function to its retarded form in real fre-
quency space, Gdd�i�n→�+ i��. For the numerical analytical
continuation, we used the N-point Padé approximant
method.23

Let us first look at the spectral function, A���=
− 1

� Im�Gdd����. For the resonant case ��AB= �
2 �, the spectral

function is plotted for different values of �t0� in Fig. 5. We see
that as we increase the coupling �t0� of the L, R states to the

AB arm, the effective many-body interaction U / �̄ is strongly
enhanced. From our analysis of the noninteracting system,
this is exactly what we expected to happen. When �t0 � =0, we
start in the weakly interacting valence fluctuating regime, but
as we increase �t0� to 0.4, the Kondo peak at zero frequency
and the Hubbard satellites24 emerge.

The transmission functions are given in Fig. 6. As in the
noninteracting case, we have resonance �antiresonance� phe-
nomena at �AB=− �

2 , �
2 �0,��, respectively. The antireso-

nance peaks are known as the Fano-Kondo antiresonance,
and have been observed experimentally in a quantum wire

with a side coupled QD.8,9 For �AB=0 and �, the antireso-
nance peaks are antisymmetric of one another about the
Fermi energy.

Now let us examine the zero bias conductance. Our re-
sults are given in Fig. 7 as a function of �AB for different
values of the ratio �t0 � / tL/R. The NRG calculation of Ref. 3
examined the zero bias conductance as a function of �AB for
different values of the gate potential, �d. A careful straight-
forward identification of the model parameters shows that
our results agree excellently with the NRG,25 which justifies
our self-energy approximation. Since G�0� is only dependent
on the value of the Green function at the Fermi energy, this
implies that the second-order self-energy approximation at
least produces reliable results near the Fermi energy for 
�0.

From Fig. 7, we see that G�0� oscillates as a function of
�AB and that the magnitude of these oscillations is strongly
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FIG. 5. Interacting QD spectral function for different magni-
tudes of �t0� when �AB= �

2 , U=0.6, and �=160. We see that as �t0� is
increased, the electron becomes more localized on the QD and, as a
result, the correlations due to the Coulomb interaction become more
pronounced.
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FIG. 6. QD spectral function and transmission amplitude for
U=0.6 and �=160. The �AB= �
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2 curves are identical, and at

these values, the spectral function is symmetric and the transmis-
sion amplitude displays resonant behavior. On the other hand, when
�AB=0 and �, the spectral function is asymmetric and the transmis-
sion amplitude has an antiresonance.
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FIG. 7. Zero bias conductance as a function of �AB for tL= tR

=0.15, U=0.5, and �=160. The conductance approaches unity
when �AB= 2n+1

2 �. Conversely, the conductance approaches a mini-
mum when �AB=n�, with integer n.
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dependent on the ratio �t0 � / tL/R. We find that �t0 � / tL/R=1 is a
special case which maximizes the magnitude of the AB os-
cillations. These oscillations are a consequence of the
cos2��AB� term in Eq. �14� and the sharp feature near the
Fermi energy of the spectral function �Fig. 6�. The resonance
�G�0�=max� �antiresonance �G�0�=min�� peaks occur at
�AB= 2n+1

2 ��n��, with integer n. Thus, by tuning �AB, we
may filter the charge through the system at zero voltage bias.
The reason why we have so much control over the conduc-
tance at zero bias is due to the Kondo effect. The Kondo
effect induces a sharp peak near the Fermi energy in the
spectral function, insensitive to �AB. This feature is due to
the many-body effect and is not present in the noninteracting
case �Fig. 3�.

D. Spin transport

For a single orbital QD, the addition of the spin-orbit
interaction induces a spin dependent phase in tR,2 i.e., tR
→ tRe−i��SO, where �=+ ��� for spin up �down�. Unlike �AB
which arises from the orbital motion, �SO depends on the
spin. To simplify our Hamiltonian, we make the unitary
transformation

cRk
† → eis�SOcRk

† �20�

so that

t0 → eis�SOt0. �21�

Now we define a spin dependent AB tunneling coefficient

t0� = �t0�ei��AB+��SO�. �22�

As a result of the spin dependence in t0�, the Green’s func-
tions also gain a spin dependence and the spin dependent
second-order self-energy is given by

��
�2��i�n� =

U2

�2 �
�1,�2

Gdd�
0 �i�n − i�1�

�Gdd−�
0 �i�2�Gdd−�

0 �i�1 + i�2� . �23�

Now let us examine the spectral and transmission func-
tions given in Fig. 8. As in the spin independent case, we see
resonance and antiresonance behaviors in the transmission
function. More importantly, due to the SO interaction, we
now have two phase factors, �AB and �SO, which, along with
the Kondo resonance near the Fermi energy, we may use to
filter the spin up and spin down electrons independently.

Let us take a closer look at Fig. 8. We see that when
�AB=�SO= �

4 , A↑ has a spectral structure similar to that of a
Kondo dot, while A↓ develops a slight asymmetry from the
spin up case. Looking at the transmission function, T↑ is
similar in shape to its spectral function and T↑ shows strong
antiresonance behavior due to the AB ring. This mechanism
gives us a strong control on the spin transport. At the Fermi
energy, T↑�0��1 and T↓�0. When �SO= �

8 , both T↑ and T↓
show strong interference effects.

To look at the zero bias spin conductance, we turn to Fig.
9, where we show the SO oscillations of the zero bias con-
ductance. The behavior of the spin up and spin down con-

ductances is a result of the cos2��AB+�SO� term for spin up
and the cos2��AB−�SO� term for spin down in Eq. �14�. In the
figure, we see that when �AB= �

4 , the spin-polarized conduc-
tance ��= �G↑�0�−G↓�0�� / �G↑�0�+G↓�0��� is maximized.
Conversely, when �SO= �

2 , the spin polarization is sup-
pressed.

The most important results of this paper are shown in the
spin-polarized conductance in Fig. 10. Here, we plot � as a
function of �SO for different values of �AB. The maximum in
the spin up or spin down conductance occurs approximately
when �AB��SO= 2n+1

2 �, while the minimum occurs at
�AB��SO=m�. This can be seen from the cos2��� factor in
Eq. �14�, since at the Kondo resonance ���0� only T0 and
the term proportional to Im�Gdd

R ���� become relevant. There-
fore, the necessary conditions on �SO and �AB for maximum
or minimum spin-polarized conductance are
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FIG. 8. Spin dependent spectral and transmission functions for
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4 , U=0.6, and �=160. For �SO= �

4 , A↑ �A↓� is symmet-
ric �asymmetric�, while T↑ �T↓� displays resonance �antiresonance�
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��SO

�AB
�

��1
=

n − m + 1
2

n + m + 1
2

, �24�

��SO

�AB
�

��0
=

n − m

n + m + 1
. �25�

Here, again we emphasize the crucial role which the
many-body interactions play in this system. The Kondo ef-
fect serves to simultaneously pin the resonance or antireso-
nance peaks of the spin dependent conductance at the chemi-
cal potential, as seen in Fig. 6. As a result, when the SO
interaction is turned on, we gain complete control over the
spin polarization �Fig. 10�. Furthermore, even if there only
exists a small SO interaction in the QD, this device serves to
enhance those inherent SO effects. In contrast to this, in the
noninteracting device �Fig. 3� the resonance or antiresonance
peaks occur at significantly different energies, making it im-
practical to use as a spin or charge filter. Therefore, we have
shown that the QD-ABI is an ideal spin filter where neither a
voltage bias nor a gate potential is needed.

III. CONCLUSION

In this paper, we have shown that the QD-ABI may be
used to localize and delocalize electrons on the QD. As a
result, when the QD is strongly correlated, we can effectively
control the strength of these correlations through the magni-
tude of t0. With larger t0, electrons get more localized on the
QD. In the case of a Coulomb interaction on the QD, the
Kondo effect induces a sharp peak in the spectral function
near the Fermi energy. We emphasize that the exact relation
for the transmission �Eq. �14�� shows that the resonance or
antiresonance is driven by the AB phase factor once the spec-
tral function develops a sharp feature near the Fermi energy,
independent of its many-body character.

The most important result of this paper is realized when a
SO interaction is present on the QD in addition to the Cou-

lomb interaction. In this case, the Kondo peak and the spin
dependent cos2��� term induce the resonance or antireso-
nance in the zero bias spin dependent conductance. Due to
this property, we can vary the G↑�0� and G↓�0� between 0
and e2 /h. Further, the SO phase gives us another degree of
freedom, in addition to the AB phase, so that the spin up and
spin down conductances may be varied independently. Thus,
by tuning �AB and �SO, the spin polarization may be fully
controlled in the QD-ABI.

APPENDIX: DERIVATION OF T(�)

In this appendix, we present the full derivation of the
transmission function. The transmission is given in terms of
Keldysh Green functions,

T���
f = iQD��� + iAB��� , �A1�

iQD��� = − tL�GdL
� ��� − GLd

� ���� , �A2�

iAB��� = �− t0
*GRL

� ��� + t0GLR
� ���� , �A3�

where GdL
� and GRL

� are the Fourier transforms of the follow-
ing time dependent nonequilibrium Green functions
�NEGFs�:

GdL
� �t� =

1
��

�
k

i�d†�0�cLk�t�� , �A4�

GRL
� �t� =

1

�
�
kk�

i�cLk
† �0�cLk��t�� , �A5�

and GLd
� =−�GdL

� �* and GLR
� =−�GRL

� �*. In calculating these
Green functions, it becomes convenient to disconnect the QD
from the reservoirs, i.e., tL= tR=0, and define the following
QD-excluded Green functions:

gLL
r = gRR

r =
− i�N0

1 + r0
, �A6�

gRL
r = �gLR

r �* =
�2N0

2t0

1 + r0
, �A7�

gLL
� =

2�iN0

�1 + r0�2 �fL + r0fR� , �A8�

gRR
� =

2�iN0

�1 + r0�2 �fR + r0fL� , �A9�

gRL
� = − �gLR

� �* =
− 2�2N0

2

�1 + r0�2 t0�fL − fR� . �A10�

We express GdL
� and GRL

� in terms of the fully interacting
retarded and advance QD Green functions and the above
QD-excluded noninteracting NEGFs.

To simplify our notation, we define F�d
r , F�d

a , and F�d
� ,

which are the retarded, advanced, and lesser Green functions

ϕSO

-1

-0.5

0

0.5

1
η

tL = tR = |t0| = 0.15

ϕAB = 0
ϕAB = π/8
ϕAB = π/4
ϕAB = 3π/8
ϕAB = π/2

ππ/2 3π/4π/40

FIG. 10. Spin-polarized conductance for different AB phases
when U=0.6 and �=160. Here, the spin polarization is defined as
�= �G↑�0�−G↓�0�� / �G↑�0�+G↓�0��. We see that the spin polariza-
tion may be fully controlled by tuning �AB and �SO. The �AB=0 and
�

2 curves are identical.
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which describe the transport from the QD to the � lead in
terms of the QD-excluded Green functions.

FLd
r = �FdL

a �* = tL�tLgLL + tRgLR�r

=
1

1 + r0
�− i�L + �r0�L�Re−i�AB� , �A11�

FRd
r = �FdR

a �* = tR�tRgRR + tLgRL�r

=
1

1 + r0
�− i�R + �r0�L�Rei�AB� , �A12�

FLd
� = − �FdL

� �* = tL�tLgLL + tRgLR��

=
2

1 + r0
�i�L�fL + r0fR� + �r0�L�Re−i�AB�fL − fR�� ,

�A13�

FRd
� = − �FdR

� �* = tR�tRgRR + tLgRL��

=
2

1 + r0
�i�R�fR + r0fL� + �r0�L�Rei�AB�fR − fL�� .

�A14�

Therefore, GRL and GdL may be written in terms of F’s and
the full QD Green function as

tLtRGRL = FRdGddFdL, �A15�

− tLGdL = GddFdL. �A16�

Using the Keldysh Green function relations26

�AB�� = A�Ba + ArB�, �A17�

�ABC�� = A�BaCa + ArB�Ca + ArBrC�, �A18�

the lesser Green functions become

GRL
� = FRd

� Gdd
a FLd

a + FRd
r Gdd

� FLd
a + FRd

� Gdd
a FLd

a , �A19�

− tLGdL
� = Gdd

� FdL
a + Gdd

r FdL
� . �A20�

Making use of the nonequilibrium steady state condition, iL
+ iR=0, we may construct Gdd

� in terms of Gdd
r and Gdd

a as
follows. The ensemble averaged currents are given by

i� = − t��Gd�
� − G�d

� � = �Fd�
a − F�d

r �Gdd
� + Gdd

r Fd�
� + F�d

� Gdd
a ,

�A21�

where �= �L ,R�. Therefore, by invoking the steady state con-
dition, the QD lesser Green function becomes

Gdd
� =

�FdL
� + FdR

� �Gdd
r − �FLd

� + FRd
� �Gdd

a

�FLd
r − FdL

a � + �FRd
r − FdR

a �
. �A22�

Inserting Gdd
� into Eq. �A21� with �=L, we arrive at iQD �Eq.

�11��. The current through the AB arm is given by

tLtRiAB = tLtR�− t0
*GRL

� + t0GLR
� �

= �− t0
*FRd

r FdL
� + t0FLd

r FdR
� �Gdd

r

+ �− t0
*FRd

� FdL
a + t0FLd

� FdR
a �Gdd

a

+ �− t0
*FRd

r FdL
a + t0FLd

r FdR
a �Gdd

� , �A23�

where all of the terms have been solved for. Thus, after doing
some algebra, iAB may be expressed as Eq. �12�. Using Eq.
�6�, we arrive at the transmission function �Eq. �14��.
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